Simpler analysis of LP extreme points for traveling salesman and survivable network design problems

نویسندگان

  • Viswanath Nagarajan
  • R. Ravi
  • Mohit Singh
چکیده

We consider the Survivable Network Design Problem (SNDP) and the Symmetric Traveling Salesman Problem (STSP). We give simpler proofs of the existence of a 2 -edge and 1-edge in any extreme point of the natural LP relaxations for the SNDP and STSP, respectively. We formulate a common generalization of both problems and show our results by a new counting argument. We also obtain a simpler proof of the existence of a 2 -edge in any extreme point of the set-pair LP relaxation for the element connectivity Survivable Network Design Problem (SNDPelt ). © 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survivable networks, linear programming relaxations and the parsimonious property

We consider the survivable network design problem the problem of designing, at minimum cost, a network with edge-connectivity requirements. As special cases, this problem encompasses the Steiner tree problem, the traveling salesman problem and the k-edge-connected network design problem. We establish a property, referred to as the parsimonious property, of the linear programming (LP) relaxation...

متن کامل

Analysis of Linear Programming Relaxations for a Class of Connectivity Problems

We consider the analysis of linear programming (LP) relaxations for a class of connectivity problems. The central problem in the class is the survivable network design problem the problem of designing a minimum cost undirected network satisfying prespecified connectivity requirements between every pair of vertices. This class includes a number of classical combinatorial optimization problems as...

متن کامل

A Simple LP Relaxation for the Asymmetric Traveling Salesman Problem

A long-standing conjecture in Combinatorial Optimization is that the integrality gap of the Held-Karp LP relaxation for the Asymmetric Traveling Salesman Problem (ATSP) is a constant. In this paper, we give a simpler LP relaxation for the ASTP. The integrality gaps of this relaxation and of the Held-Karp relaxation are within a constant factor of each other. Our LP is simpler in the sense that ...

متن کامل

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

The parsimonious property of cut covering problems and its applications

We consider the analysis of linear programming relaxations of a large class of combinatorial problems that can be formulated as problems of covering cuts, including the Steiner tree, the traveling salesman, the vehicle routing, the matching, the T-join and the survivable network design problem, to name a few. We prove that all of the problems in the class satisfy a nice structural property, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010